Evaluation of Adhesion of Cement Based Protective Mortars Overlayed on Corroded Concrete Host

Jay Ye Jun In¹, Cherdphong Seedao¹, James Gardner² and Marjorie Valix¹

1. The University of Sydney, Sydney, NSW, Australia 2. Water Services Association of Australia, Melbourne, VIC, Australia

Outline

- Background
- Aim
- Lining System
- Approach
- Corrosion Classification of Sewer Environment
- Materials and Methods
- Results
- Summary

Background

- Mortar linings such as calcium aluminate cement (CAC) and geopolymers have potential to protect assets from microbially induced concrete corrosion (MICC).
- Use of such linings are limited by lack of performance data.
- Practical guidelines to promote adhesion of the mortars are limited.

Aim

Establish surface preparation requirement to promote mortar adhesion on corroded assets

Assess adhesion of lining mortars over time in live sewers with varying corrosivity

Lining System

The University of Sydney

Types of Lining:

- CAC (100% CAC/Siliceous aggregates)
- Geopolymer

Corroded Host

Surface Repair Mortar

Field Application Approach

1. Condition Assessment

2. Surface Preparation

3. Qualifying Clean Asset

4. Shotcrete

Application

of Mortar

5. Finishing

6. Monitoring

Test Beds and Conditions

Steps for Rehabilitation

Location	Asset	Asset Age (years)	H ₂ S (ppm)	CO2	Temperature (°C)	Relative Humidity (%)
Adelaide Brisbane Melbourne Perth Sydney	Manholes (x14) Pipes (x2)	18-81	1.6-170	2520-13925	15-30	95-99

Corrosion Classification of Sewer Environment

Corrosion	Corrosion	Environmental Conditions				
Classification	Impact	H ₂ S (ppm)	CO ₂ (ppm)	T _g (°C)	RH (%)	
Category 5	Very High	>155	<2500	15-28	95-99	
Category 4	High	135-155	2500-4000	15-28	95-99	
Category 3	Medium	70-135	4000-9300	15-28	95-99	
Category 2	Low	15-70	9300-9400	15-28	95-99	
Category 1	Very Low	<15	9400-9500	15-28	95-99	

(WSA 201-2021)

Assessment Approach

Materials and Methods

Adhesive Failure

Modes of Failure

Cohesive Failure

Materials and Methods UCS

Unconfined Compressive Strength (UCS) Test

Results

What is Sound Concrete?

Sound concrete is defined as concrete with pH above 8.0 and has been set to qualify surface preparation.

Micro Porosity in Sound and Unsound Concrete

Impact of Porosity in Overall UCS

Use of pressurised water to remove laitance material and restore overall part of the overall compressive strength.

Surface Preparation Method					
Mist/vapour	Water jetting	Water jetting			
blasting	2000 – 2500 psi	6800 psi			
110-150 psi	(low pressure water	(high pressure			
(with garnet)	cleaning)	water cleaning)			

Microstructure

Overlaying Lining on Sound and Unsound Concrete

Corrosion products have no hydraulic property

Bond Strength: 1.0 MPa

Bond Strength: 0.0 MPa

Bond Strength as a Function of Surface pH at Post Application

Effect of Time on Lining Bond Strength

- Bond strength increases and declines over time, with adhesive failure as the primary mode.
- With time, mode of failure becomes cohesive failure of coating (notable in GEOs tested).

A: Adhesive CC: Cohesive, Coating

Effect of Surface pH and Time

Corroded host surface induces premature failure and limits bond strength.

The University of Sydney

Effect of Corrosion Classification on Bond Strength

The University of Sydney

Summary

• Surface Preparation Requirement

- Sound concrete is defined as concrete with pH > 8.
- Unsound concrete with pH < 8 is characterised with non-hydraulic corrosion products, low strength and high porosity.
- Field test verifies reliability of sound concrete definition.

• Effect of Sewer Corrosivity and Time on Bond Strength and Modes of Failure

- Bond strength increases then declines with time. Early mode of failure is by adhesive failure, with longer term, bond failure is occurring by cohesive failure of coatings.
- Type of coating impacts bond strength. CAC > GEO for tested products.
- Impact of corrosion classification suggests CO₂ may have greater impact than H₂S on bond strength.

Acknowledgements

In addition to the grant provided by the Australian Government though the Cooperative Research Centre, this project was made possible by the following project partners, all of whom contributed expertise, labour, funding, products or trial sites to assist in its delivery.

The authors also acknowledge the technical and scientific assistance of Sydney Microscopy & Microanalysis, the University of Sydney node of Microscopy Australia.

BASF Australia	Icon Water	Sydney Water Corporation	
Bisley & Company	Interflow	The Water Research Foundation	
Calucem GmbH	Melbourne Water Corporation	UK Water Industry Research Ltd (UKWIR)	
GeoTree Solutions	Parchem Construction Supplies	Urban Utilities	
Hunter Water Corporation	SA Water Corporation	Water Corporation	
Hychem International	South East Water Corporation	Abergeldie Watertech	

Questions?

